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A B S T R A C T   

The dry cask storage system (DCSS) canisters have been used for the storage of high-level nuclear for decades. The inspections are needed to ensure that structural 
integrity is maintained. One mechanism of degradation on DCSS canisters that is of interest is stress corrosion cracking (SCC). Acoustic emission (AE) is a nonde
structive technique that can be employed as an inspection approach since it can offer real-time degradation detection. This paper presents the approaches that can 
localize SCC sources by minimal acoustic emission (AE) sensor. To achieve this goal, three machine learning techniques (artificial neural network, random forest, 
stacked autoencoders) were adopted to improve the conventional source localization approach. In this paper, source localization is treated as a classification problem. 
The testing specimen was divided into multiple zones and located the AE signals to their corresponding zones. The AE signals were processed to create two datasets: a 
dataset consisting of AE parametric features and a dataset consisting of AE waveforms. Source localization approaches using artificial neural networks, random forest, 
and stacked autoencoders were trained and tested based on the datasets. The results show all three machine learning techniques can learn to map AE signals to their 
sources. Among them, stacked autoencoders have the best performance (97.8% accuracy of stacked autoencoders versus 91.5% of random forest, and 80.0% of ANN), 
demonstrating that it could be a potential approach to localize SCC events on DCSS canister.   

1. Introduction 

Nuclear power generation has been widely applied in the United 
States for decades (Xie and Zhang, 2015). Currently, spent fuel is stored 
in cooling pools and dry cast storage systems (DCSS). DCSS use was 
initiated in the 1970 s. Spent fuels are placed in stainless-steel canisters, 
then water and air are removed and replaced by an inert gas. These dry 
storage systems were originally licensed for an operation period of 20 
years. With the continued delays in the opening of a functional re
pository for the storage of these materials, the systems that are currently 
in operation now will be required to be operational for a significantly 
longer time. To extend the operation license, the inspections of the DCSS 
canister are needed to ensure the structural operability. Stress corrosion 
cracking (SCC) has been identified as the main degradation mechanism 
of concern on DCSS canisters because of the high salinity and humidity 
in the coast region where those DCSS canisters are placed (Hill, 2018; 
Yeom et al., 2020; Wu, 2020). Therefore, the in-situ examination for the 
detection of SCC defects is desirable. 

Acoustic emission (AE) is a nondestructive structural health moni
toring technique (Li, 2002; Ono, 2011; Anay et al., 2018; Soltangharaei 
et al., 2018, 2020; Li et al., 2018, 2020; Ai et al., 2019, 2020). It has been 

widely used to detect cracks in the infrastructures such as bridges (Anay 
et al., 2020), dams (Wang et al., 2019), and nuclear facilities (Nozawa 
et al., 2014; Véronique et al., 2015; Baek et al., 2018). Recently, ap
plications of AE have been investigated to detect stress corrosion 
cracking. Soltangharaei et al. (Soltangharaei et al., 2020) utilized AE 
and pattern recognition to identify the AE signal signatures caused by 
the propagation of SCC in DCSS. A small-scale 304 stainless steel plate 
was employed instead of testing on the real-scale DCSS canister. The 
results indicated that AE monitoring has a good capability to detect and 
identify SCC events. 

However, there is a problem when applying AE monitoring in the 
realistic DCSS canister. The canisters are very large and are stored in a 
concrete overpack. Fig. 1 shows a cutaway mockup of a DCSS canister. 

The available area for sensor attachment is limited. In a recent study 
about the AE monitoring of DCSS canister, sensors were placed on the 
bottom support structure of the canister (EPRI, 2016). However, SCC 
crack would usually occur on the canister far away from the bottom. It is 
difficult to employ an array of four or more AE sensors around the 
cracking region to detect the location of a crack using the time of arrival 
approach. Machine learning techniques could be alternative methods to 
solve the source localization problem in this situation. 
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Artificial neural network (ANN) is a field of interest in machine 
learning (Basheer and Hajmeer, 2000). Soltangharaei et al. (Sol
tangharaei et al., 2019) utilized a back-propagation neural network to 
localize the impact on aircraft components. Acoustic emission events are 
collected by a single AE sensor during the impact experiment. AE fea
tures such as energy, amplitude, and signal strength were adopted as the 
neural network’s input. The outputs were zonal source localization re
sults. The results showed that source localization of AE events using 
back-propagation neural network has the capability to acquire accurate 
localization results. However, the problems of local optimal solutions 
and explosion gradient (Bengio et al., 1994) have become the main 
bottlenecks of ANN. Moreover, a good dimension reduction or feature 
selection is usually needed. Therefore, when applying ANN to the 
analysis of AE data, appropriate parametric AE features are supposed to 
be extracted from the original AE signals. 

Random forest is one of the present state-of-the-art classifiers based 
on ensemble learning strategy (Breiman, 2001). It has fast training 
speed, and it is robust to the number of training samples. Moreover, it 
can provide the ranking of features importance, which means a good 
feature selection can be obtained instead of manual selection. The 
random forest has a wide application in fault diagnose. Cerrada et al. 
(Cerrada et al., 2016) built a robust system for the multi-class fault 
diagnosis in spur gears using genetic algorithms and random forest. An 
acceptable diagnose accuracy was obtained based on the real vibration 
signals. Patel et al. (Patel and Giri, 2016) presented a random forest 
classifier as an approach for the classification of bearing fault and 
feature selection. The most important features of vibration signals were 
selected and assigned to the random forest model. Results indicated the 
random forest is turn out to be a suitable approach for fault diagnosis of 
any rotating machine. 

Stacked autoencoders is a deep learning algorithm composed of 
multi-layer autoencoders. (Bengio et al., 2007). The concept of deep 
learning stems from the study of artificial neural networks. The most 
attractive advantage of deep learning is that no feature selection or 
dimension reduction is needed (Arel et al., 2010). Raw data can be 
utilized as input. Deep learning combines low-level features to form 
more abstract high-level features to discover the distributed feature 
representations of data. A stacked autoencoder has been utilized for AE 
source localization. Karvelis et al. (Karvelis et al., 2020) studied the 
structural health monitoring of ship hulls using the acoustic emission 
method. A stacked autoencoder neural network was employed to obtain 

the locations of AE events induced by SCC on ship hulls. The source 
localization approach was validated, and the results indicate that the 
method can be very effective and efficient. 

The goal of this paper is to propose the machine learning-based 
source localization approaches for large-scaled steel structures like 
DCSS canister. The Source localization approaches based on ANN, 
random forest, and stacked autoencoder are proposed and results 
compared. 

2. Test setup and experimental procedure 

The primary objective of the experiments was to examine the capa
bility of the proposed source localization techniques on DCSS canister 
when a single AE sensor is employed on the bottom edge. To simulate a 
realistic experimental environmental situation for the test setup, a test 
specimen was made of similar length and thickness (Industry Spent Fuel 
Storage Handbook, 2010) to what is typical of DCSS canister shells and 
of the greatest width that could be managed. This resulted in a specimen 
size of 5029 × 1524 × 16 mm. The plan view of the specimen is provided 
in Fig. 2. The specimen is fabricated from 304/304H stainless steel. 

AE is a physical phenomenon related to stress waves generated by the 
rapid release of elastic energy when cracks or damage are formed in 
materials (Wadley and Mehrabian, 1984; Grosse et al., 2008). By 
attaching AE sensors to the surface of an object, AE signals can be 
detected and recorded. The technique of collecting and analyzing AE 
signals to diagnose the status of an object is referred to as AE monitoring 
(Scruby, 1987). The Hsu-Nielsen pencil lead break (Hsu, 1977) is one of 
the widely used artificial sources to generate AE signals by conducting 
pencil lead break on the object to which AE sensor is attached. In this 
paper, A Hsu-Nielsen pencil lead break test was conducted to simulate 
the cracks that usually initiate on the canister. 135 points were set up on 
the specimen (marked as red dots in Fig. 3). The Hsu-Nielsen pencil lead 
break was repeated 30 times on each of these points. The AE sensor was 
attached to the upper left corner of the specimen to simulate the 
circumstance that the sensor is placed on the bottom support of a DCSS 
canister. 4050 AE events were collected during the experiment. 

To determine the appropriate AE sensor applied in the study. An 
attenuation test has been conducted on a resonant sensor (type R3I-AST) 
with a frequency response range of 10–40 kHz, a resonant sensor (type 
R6I-AST) with a frequency response range of 40–100 kHz, and a 
broadband sensor (type WDI-AST) with a frequency response range of 

Fig. 1. Cutaway mockup of simulated dry storage cask system.  
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100–900 kHz. Pencil lead breaks were conducted on the specimen with a 
distance to the sensor from 0− 5000 mm. The results are provided in 
Fig. 4. 

It can be observed, R3I-AST sensor has the highest sensitivity in long 
distance. Therefore R3I-AST sensor was employed in this study to ensure 
the events far away from the sensor can be detected. The calibration of 
the AE sensor was conducted by applying Hsu-Nielsen pencil lead break 
beside the AE sensor when it was attached on the steel plate. The stan
dard of a reliable and sensitive AE sensor is that the acquired amplitude 
of the waveform is close to 80 dB for the broadband sensor, and 90 dB for 
resonating sensor. It can also be observed in Fig. 4, when the distance is 
close to 0 mm, the amplitude of the resonate sensors and the broadband 

sensor reached 90 dB, and 80 dB. The Data collected from the sensor was 
obtained using a 16-channel PCI digital signal processing (DSP) system 
(manufactured by Mistras Group, Inc. of Princeton Junction, New Jer
sey). The pre-trigger time, a setting in the software, which recovers 
acoustic waveforms prior to crossing the threshold, was set to 256 μs. 
The sampling rate was set to 1 MHz (or 1,000,000 samples per second). 
The time from threshold crossing to peak amplitude, peak definition 
time, was set to 200 μs. The hit definition time, which determines when 
to stop recording a hit, was set to 400 μs. Its value typically twice the 
peak definition time. The hit lockout time, which minimized the 
recording of late arrival signals and reflected hits, was set to 200 μs 
(Laksimi et al., 1999). 

3. Data collection 

3.1. Zone code 

The source localization approaches proposed in the paper belong to 
the family of the paper are the zonal localization method, and AE events 
will be localized to their corresponding zones. In this paper, the AE 
events collected in the experiment were divided into five zones. Fig. 5 
shows the zonal divisions. From left to right, the AE events on the 
specimen are divided into zones 1, zones 2, zones 3, zones 4, and zones 
5. There are 810 AE events in each of the zones. 

3.2. Feature-based data 

AE features are used to reduce the amount of information carried by 
the AE signal to a specific value (Ali et al., 2019). Those features can 

Fig. 2. Plan view of the specimen.  

Fig. 3. Locations of AE sensor and pencil lead breaks.  

Fig. 4. Attenuation curves.  
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represent the characteristics of AE signals in several aspects. For 
example. “Amplitude” refers to the maximum amplitude at the peak, 
“Counts” indicates the number of threshold crossings, “Rise time” rep
resents the time interval between the first threshold crossing and 
maximum amplitude. Fifteen features were extracted from the AE events 
collected in the experiment. The names and descriptions of the features 
are provided in Table 1. The AE data after feature extraction forms the 
feature-based dataset, which contains 4050 data, and each data has 15 
sample points. The feature-based data was utilized as the input for 
source localization approaches using ANN and random forest, which are 
introduced in Section 4.1 and Section 4.2. The zone codes introduced in 
Section 3.1 were utilized as labels during training and testing processes. 

3.3. Waveform-based data 

During AE data acquisition, the sampling rate was set to 1 MHz, and 
the duration was set to 2000 μs. An AE waveform collected during the 
impact test, therefore has 2000 sample points. A dataset consisting of 
original AE waveforms was constructed based on AE events from the 
experiment. In the waveform-based dataset, there are 4050 AE wave
forms, and each one is a one-dimensional series with 2000 sample 
points. This dataset was utilized as the input for the source localization 
approach using stacked autoencoders. The zone codes introduced in 
Section 3.1 were utilized as labels during training and testing processes. 
In each of the five zones, 810 AE signals of pencil lead break were 
collected. A single signal was randomly selected from the 810 AE signals 

of each zone and shown in Fig. 6. It can be observed that the AE 
waveforms in different zones have different data distribution patterns. 
The stacked autoencoders can learn the patterns of waveforms and 
classify them into the corresponding zones. 

All waveforms in the waveform-based dataset were normalized by 
amplitude to a range of − 1 to 1. The specimen is large, and the ampli
tude of the waveforms therefore varies greatly in different zones due to 
attenuation. If a dataset without normalization is used, the network will 
focus on the amplitude while other important characteristics may be 
ignored, significantly impacting the results. To minimize dimensional 
influences between the waveforms, normalization processing is there
fore needed (Jayalakshmi and Santhakumaran, 2011). After the original 
waveforms are normalized, all characteristics are in the same order of 
magnitude for comprehensive comparative evaluation. 

4. Methods 

4.1. Back-Propagation neural network 

Artificial neural networks (ANNs) are information processing sys
tems that mimic how the human brain processes information (Hassoun, 
1995). The neural network adopted in this section is a back-propagation 
(BP) network; it consists of an input layer, hidden layers, and an output 
layer, each layer has many processing elements, called neurons, and 
each neuron is connected to each other. The number of neurons in the 
input layer and the output layer corresponds to the number of variables 
and the number of outputs. Fig. 7 shows a simple three-layer artificial 
neural network consisting of layer j, i, and k. The number of neurons is m 
for layer j, n for layer i, and l for layer k. W(ij) and W(kj) are weights 
between layers. The values of m and l are related to the problem for 
solving, and n is determined by the network designer. 

The performance of an ANN model depends on the configuration of 
the network, including the number of neurons in hidden layers and 
activation functions for each layer. The number of neurons in hidden 
layers is determined using a trial-and-error method (Sun et al., 2020). 
But some guidelines have been developed to decide the upper limit 
without losing fidelity in approximating. One commonly used method in 
determining cap for neurons in hidden layers is: 

Nhidden ≤ 2Ninput + 1 (1)  

where Nhidden is the number of neurons in the hidden layers and Ninput is 
the number of input variables. However, to avoid overfitting the training 
data, the number of neurons should also be determined with consider
ation of the training sample size. Rogers et al. (Rogers and Dowla, 1994) 
commend the following relationship: 

Nhidden ≤
Strain

Ninput + 1
(2)  

where Strain is the sample size of training data. Here, we determine the 
upper limit for the number of hidden layer neurons as the smallest of the 
values for Nhidden calculated by Eq. (1) and (2). 

Fig. 5. Zone codes.  

Table 1 
Descriptions of the input features for random forest.  

Features Descriptions 

Amplitude (dB) The maximum amplitude at the peak 
Count The number of threshold crossings 
Rise time (μs)  Time interval between first threshold crossing and 

maximum amplitude 
Duration (μs)  Time between first and last threshold crossing of signal 
Average frequency 

(kHz) 
Counts/Duration 

Root mean square 
(RMS) (V) 

The effective voltage with a characteristic timeTRMS for 
average ranging from 10 to 1000ms  

Average signal level 
(ASL) (V) 

The effective voltage with a characteristic time TASL for 
average ranging from 10 to 1000ms  

Energy The measure of the electrical energy measured for an AE 
signal 

Absolute energy The absolute measure of the electrical energy measured 
for an AE signal 

Peak frequency (kHz) Frequency of maximum signal contribution 
Reverberation 

frequency (kHz) 
Frequency after the peak 

Initial frequency (kHz) Frequency before the peak 
Signal strength A parameter to evaluate the AE source strength 
Frequency centroid 

(kHz) 
A parameter to characterize the overall frequency content 
of an AE signal 

Counts to peak (PCNTS) The number of threshold crossings from the first 
threshold crossing to the peak  
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A trial-and-error test was conducted for the selection of ANN model 
configuration. The process is shown in Table 2. The input data of the 
network is the feature-based AE data introduced in Section 3.2. The zone 
codes are presented in Section 3.1 were utilized as the labels of the input. 
It is noticed that the highest accuracy is 80.1%, whose corresponding 
configuration is two hidden layers with 20 neurons for each of the 
hidden layers while the lowest (76.6%) accuracy was observed when the 
corresponding configuration was one hidden layer with 10 neurons. 
There is some evidence of lower accuracy when neuron numbers reach 
the upper limit, and generally, networks with 2 hidden layers have 
better performance than counterparts in one hidden layer model. In this 
study, two hidden layers with 20 neurons for each of the hidden layers 
were selected as the configuration of the ANN in AE source localization. 

4.2. Random forest 

Random forest (RF) is an ensemble learning method containing 
multiple decision trees (Liaw and Wiener, 2002). Decision tree models 

are trained to be independently, and the results produced by these 
models are put together, with the final prediction receiving the most 
votes. At present, the mainstream decision tree algorithm includes C4.5 
and classification and regression trees (CART). C4.5 is a decision tree 
algorithm proposed by Quinlan et al. (Quinlan, 2014). C4.5 builds de
cision trees from a set of training data using the concept of information 
entropy. In a C4.5 tree, each node can be branched into multiple sub 
nodes, the combination of features is not supported in the nodes. C4.5 
can only be used for classification problems (Sathyadevan and Nair, 
2015). For the CART decision tree, each node is branched into only two 
sub nodes, supporting a combination of features, and can be used for 
classification and regression problems (Rutkowski et al., 2014). In the 
random forest, the CART decision tree is a commonly used approach. In 
this paper, Gini impurity was adopted as the criterion for the branching 
CART decision tree. 

The steps to create a random forest are as follow: 
(1) Sample randomization: Assume there is an original dataset 

named T, which has N samples. By using the bootstrapping method, N 

Fig. 6. The waveform in each zone.  
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samples are taken from the original dataset T with replacement and form 
a new subset. These N samples in the new subset may contain a sample 
that has been taken many times or a sample that has never been taken. 
The probability that a sample has never been taken can be obtained by 
Eq. (3): 

h(N) = (1 −
1
N
)

N (3) 

The limit of the probability can be calculated by Eq. (4): 

lim
N→∞

(

1 −
1
N

)N

= 0.368 (4) 

According to Eq. (4), nearly 36.8% of the data in the original data set 
may not appear in the new subset. This unselected data is called out-of- 
bag (OOB) data, which can be used to test the decision tree’s general
ization performance. 

(2) Feature randomization: Assume each sample in the new subset 
has n features. t features (t ≤ n) are randomly selected and transfer to the 
decision tree. By calculating the information contained in each feature, a 
feature with the most classification ability is selected for node branch
ing. Genuer et al. (Genuer et al., 2010) recommend the following rela
tionship between n and t: 

t ≈
̅̅̅
n

√
(5) 

(3) Create a decision tree: By repeating steps (1) and (2) for m times, 
m subsets that contain t features in each sample can be obtained. Each 
subset is transferred to an individual decision tree. In other words, m 
decision trees are created. 

(4) Form the random forest: the m trees are formed into a random 
forest. The decision trees inside the random forest generate their own 
classification results. The final results are determined according to the 
number of votes. 

An advantage of the random forest is the ability to assess the 
importance of features (Menze et al., 2009). The calculation requires the 
help of the Gini impurity. By adding noise to one of the features. The 
new Gini impurity is obtained and compare with the value of the old 
Gini impurity before adding the noise. The difference between the Gini 
impurities is utilized as a measure of the importance of this feature. 

In this paper, a random forest classification model contains 800 de
cision trees was adopted for AE data source localization. The feature- 
based AE dataset, which was introduced in Section 3.2, was utilized 
for training and to test this approach. By using the Bootstrapping 
method, 800 subsets were drawn from the original AE dataset. Each 
sample in the new subsets has 4 features that were randomly selected 
from the original 15 features. The number of features in the new subset 
was determined by Eq (6). The subsets were assigned the decision trees. 
These decision trees inside the random forest work independently and 
generate their own localization results. The final result is given by 
voting. Fig. 8 shows the random forest used in this paper. The output of 
the random forest model is the zoning code of the corresponding AE 
event. 

Generally, the error of random forest will decrease with the increase 
of the number of decision trees. Once the number of decision trees 

Fig. 7. Three-layer artificial neural network.  

Table 2 
Description of Artificial Neural Networks Configuration Selection Process.  

Hidden layers Neurons Accuracy (%) 

1st hidden 2nd hidden  

1 10 N/A  76.6 
20 N/A  78.9 
31 N/A  77.7 

2 10 10  76.9 
20 20  80.1 
31 31  79.1  

Fig. 8. The architecture of the random forest.  
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increased to a certain number, the error of the model will converge to a 
certain value. Continue to increase the number of decision trees will not 
reduce the error but increase the computational cost of the entire 
random forest. Therefore, an appropriate number of decision trees is 
critical to the optimization of the random forest. To determine the 
number, the random forest model was tested with tree numbers varying 
from 200 to 2000, with an interval of 200. The zoning code introduced 
in Section 3.1 was utilized as the labels of the input feature-based AE 
data. The determination process of the number of trees is shown in 
Table 3. The classification mistake rate keeps decreasing before the 
number of trees reaches 800, while no significant change of classifica
tion error can be observed when the number of trees continually 
increased to 2000. However, a small fluctuation can still be observed, 
and this is because, in a random forest, each decision tree randomly 
selects training samples in a given training dataset based on boot
strapping. The decision trees within two random forests (e.g., random 
forests with 800 trees and 1000 trees) are different, which results in a 
small fluctuation when the tree number increase from 800 to 2000. 
While the general trend is towards a plateau. Comprehensively consid
ering all the above, the number of decision trees is defined as 800 in this 
paper. 

4.3. Stacked autoencoder 

Autoencoder is a three-layer neural network model with an input 
layer, hidden layer, and output layer (Ng, 2011). The network structure 
is shown in Fig. 9. The input layer and the output layer have the same 
dimension, while the hidden layer has a smaller dimension. 

Assuming the input data is a n dimensional vector 
{
x1, x2, x3⋯xn}, 

the process of mapping the input data to the m (m < n) dimensional 

vector 
{

h1, h2, h3⋯hm
}

in the hidden layer through the nonlinear 

encoding function E is named as encoder stage. The process of mapping 
the m dimension vector in the hidden layer to the n dimension vector 
{
x’1, x’2, x’3⋯x’n} in the output layer through the decoding function D 

is named as decoder stage. The encoding function E and the decoding 
function D are presented in Eqs. (6) and (7): 

h = E(x) = Sθ(wx + b) (6)  

x’ = D(h) = Sθ’(w’h + b’) (7)  

Where, {θ, θ’} = {w,w’, b, b’} is the mapping parameter set in the 
autoencoder. w and w’ are the weights of encoding and decoding stages; 
both are m × n dimensional matrix. b and b’ are the n dimensional bias 
vectors of encoding and decoding stages. S is the activation function. 
The activation function for the autoencoder in this paper is a sigmoid 
function (Eq. (8)): 

f (x) =
1

1 + e− x (8) 

The process of transferring the input vector {x1, x2, x3⋯xn} to the 
output vector {x’1, x’2, x’3⋯x’n} is called reconstruction. The training 

object of the autoencoder is to minimize the error in data reconstruction 
by constantly adjusting the mapping parameters set {θ, θ’} = {w,w’, b,
b’}. A training process of N iterations can be expressed by Eq. (9): 

θ, θ’ = argmin
1
N

∑N

i=1
L
(
xi, x’ i)

= argmin
1
N

∑N

i=1
‖xi − x’i‖

2 (9)  

Where, xi and x’i refer to the ith element in the input and output vector. L 
is the mean squared error between xi and x’i. 

By minimizing reconstruction errors, the vector in the hidden layer 
well preserves the information contained in the input vector; in the 
meantime, the dimension is significantly reduced (Rogers and Dowla, 

1994). Therefore, the vector 
{

h1, h2, h3⋯hm
}

in the hidden layer can be 

seen as the feature set extracted from the input vector. 
The classification stacked autoencoder consists of multiple autoen

coders and a softmax layer (Tao et al., 2015). The first autoencoder 
extracts the feature set of the input data and takes the obtained feature 
set as the input data of the next autoencoder for further feature 
extraction. All the training processes in autoencoders are unsupervised 
training, and no labels are needed in this stage. The feature set from the 
last autoencoder is used as the input of the softmax classifier for su
pervised training. The corresponding classes of each input data are 
required to be known as the labels. Assume the inputs contain k classed. 
The final output of a stacked autoencoder is a k dimensional vector; each 
element represents the probability that the input belongs to this class. 
The class with the highest probability can be considered as the classi
fication result. 

The stacked autoencoder network utilized in this paper has two 
autoencoders. The first autoencoder has a hidden size of 100, and the 
second autoencoder has a hidden size of 50. Different from ANN and 
random forest, the input data of the network is the waveform-based AE 
data introduced in Section 3.3. The corresponding zone code of the AE 
data is utilized as the labels in the training of the softmax layer. A source 
localization result is obtained as the output of this stacked autoencoder 
neural network. Fig. 10 shows the structure of the stacked autoencoder 
applied in this paper. 

5. Results and discussion 

5.1. Source localization using BP-ANN 

The feature-based AE dataset was adopted in the scenario of source 
localization using ANN. In the 4050 data collected during the experi
ment, 2025 AE data were randomly selected for training, 675 AE data 
were randomly selected for validation. The remaining 1350 data were 
utilized to test the performance of the trained ANN. The source locali
zation results are shown in Fig. 11a as a confusion matrix. The numbers 

Table 3 
Description of the selection process of trees number.  

Trees number Error (%) 

200 14.7 
400 11.8 
600 10.1 
800 9.5 
1000 9.8 
1200 9.9 
1400 9.6 
1600 9.5 
1800 10.1 
2000 9.9  

Fig. 9. Scheme of autoencoder.  
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of AE data that are correctly localized in their corresponding zones are 
shown in the main diagonal of the confusion matrix. There were 1080 
AE events correctly located in the corresponding zone, accounting for 
80% of the total AE data. In other words, the overall accuracy was 80%. 
In addition to accuracy, precision, and recall for each class are usually 
implemented to evaluate the performance of classification in each class 
(Guo et al., 2020). The value of precision is obtained by Eq. (10): 

Precision =
TP

TP + FP
(10)  

Where TP refers to true positives, which means the number of samples 
that correctly classify to the corresponding class, FP refers to false pos
itives, which is the number of samples that do not belong to the class but 
are classified into the class by error. Precisions of the five class are 
respectively 86.9%, 76.6%, 76.7%, 75.5%, 87.4% from zone 1 to 5. 

The value of recall can be obtained by Eq. (11): 

Recall =
TP

TP + FN
(11) 

Where FN refers to false negatives, the number of samples that 
belong to the class but are classified into the other classes by error. 
Recalls of the five classes are respectively 84.6%, 79.0%, 77.5%, 75.5%, 
83.2% from zone 1 to 5. 

Precision and recall influence each other. A class with high precision 

usually has a low recall and vice versa (Buckland and Gey, 1994). To 
comprehensively evaluate the efficiency of the classifier in each class, 
the F1-score can be employed. 

F1-score, also referred to as the balanced F score, is defined as the 
harmonic mean of precision and recall (Zhong et al., 2019). It can be 
provided by Eq. (12): 

F1 =
2 × Precision × Recall

Precision + Recall
=

2TP
2TP + FP + FN

(12) 

F1 of the five classes are respectively 85.7%, 77.8%, 77.1%, 75.5%, 
85.2% from zone 1 to 5. The values of precision recall and F1 for each 
class are compared and shown in Fig. 11b. Zones on the edge (zone 1 and 
5) performed better than the inner areas (zones 2, 3, and 4). This situ
ation occurs because when localizing the events in the inner zone, the 
misclassification events were almost localized in the nearby zones. 
While the zones near the edge have one nearby zone, misclassification 
occurred primarily in that zone only. 

The computing time for the training process on an intel i-7 four core 
CPU was 7.96 s. The computing time required for the testing data 
running on a trained ANN was 0.02 s. 

5.2. Source localization using random forest 

The data used for the training of this network were 2,700 feature- 

Fig. 10. Stacked Autoencoder network with two autoencoders.  

Fig. 11. Performance of each classification using ANN: (a) confusion matrix; (b) evaluation of each zone.  
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based AE signals randomly selected from all 4,050 data. The remaining 
1,350 signals were utilized for testing. Fig. 12a shows the confusion 
matrix of the random forest source localization result. Overall, the ac
curacy on the test set was 90.5%. 1,222 AE signals were correctly 
localized, while 128 were in error. The number of AE signals correctly 
localized in their corresponding zone is shown in the main diagonal of 
the confusion matrix (Fig. 12a). Fig. 12b shows the precision and recall 
for each zone. From zone 1 to 5. Precision of the five classes is respec
tively 94.8%, 90.1%, 92.6%, 86.6%, 88.8%. Recall of the five classes are 
respectively 94.8%, 92.0%, 91.2%, 85.7%, 88.8%. F1 of the five classes 
are respectively 94.8%, 91.0%, 91.9%, 86.1%, 88.8%. Zone 1 performed 
the best rather than the other zones (zones 2, 3, 4, and 5). This might be 
caused by the attenuation of signals during the transmission. Zone 1 has 
the smallest distance from the AE sensor, which results in the signal from 
zone 1, retaining the complete information. 

The computing time for the training process within an intel i-7 four 
core CPU was 4.03 s. The computing time for testing was 0.02 s. 

The importance percentage of AE features can be provided by the 
random forest model. The names of all 15 features and their corre
sponding percentages of importance are shown in Fig. 13a. Their 
ranking descends from left to right. By observing Fig. 13a, it can be 
noticed that the importance of the features “peak frequency” and “rise 
time” are significantly higher than the rest. Those two features have a 
major impact on the source localization results. Features “average fre
quency”, “ASL” and reverberation frequency hold the lowest impor
tance, meaning their impact on the results is limited. Deleting them will 
not have a significant influence on localization performance. 

The appropriate features can be selected from the feature set by the 
guidance of the ranking of feature importance when the input has a large 
dimension. Deleting the features with low importance can reduce the 
computing time and may increase the classification accuracy. In this 
paper, features were selected based on the cumulative importance of 
features. The cumulative importance can be obtained by the calculation 
of one-by-one accumulation by the sequencing of importance, which can 
be observed in Fig. 13a. The features that have 65%, 75%, 85%, and 
95% cumulative importance were respectively selected. The cumulative 
importance of features was calculated and shown in Fig. 13b. Four 
subsets were extracted from the feature-based dataset based on the cu
mulative importance of features: Subset 1 consist of “peak frequency”, 
“rise time”, “initial frequency”, “amplitude” and “duration”. The sum of 
the important percentage of the features in this subset is 65%. Subset 2 
which in consist of “peak frequency”, “rise time”, “initial frequency”, 
“amplitude”, “duration”, “PCNTS” and “counts”. The sum of the 
importance percentage is 75%. Subset 3 which in consist of “peak fre
quency”, “rise time”, “initial frequency”, “amplitude”, “duration”, 
“PCNTS”, “counts”, “absolute energy” and “frequency centroid”. The 

sum of the importance percentage is 85%. Subset 4 which in consist of 
“peak frequency”, “rise time”, “initial frequency”, “amplitude”, “dura
tion”, “PCNTS”, “counts”, “absolute energy”, “frequency centroid”, 
“energy” and “RMS”. The sum of the important percentage of the fea
tures in this subset is 95%. The accuracies and computing times of the 
random forest models attained by inputting the four subsets are plotted 
in Fig. 14. The accuracy increased as low importance features were 
deleted. The total time required for training and testing reduces with the 
deletion of these features. The maximum accuracy (91.5%) was 
observed when the subset with 75% of the cumulative importance was 
utilized as the input; meanwhile, the total computing time was 2.98 s, in 
which the training required 2.97 s and the testing required 0.01 s. 
Comparing with the case using the original feature-based dataset, the 
accuracy increased from 90.5% to 91.5%, training time was reduced 
from 4.03 s to 2.97 s, and testing time was reduced from 0.02 s to 0.01 s. 
This indicates the accuracy and computing time can be optimized by 
using the subset with 75% of cumulative importance. Therefore, the 
random forest model which utilized the subset consisting of “peak fre
quency”, “rise time”, “initial frequency”, “amplitude”, “duration”, 
“PCNTS” and “counts” is preferred and compared with ANN and stacked 
autoencoders in Section 5.4. 

5.3. Source localization using SAE 

The waveform-based AE dataset was utilized for training and testing 
the performance of the source localization approach using the stacked 
autoencoder. In this paper, the data acquisition system was set to record 
2 million AE samples per second. The recording duration of an AE event 
was 1 microsecond. Therefore, every wave-based signal in the dataset 
contains 2000 sample points. The stacked autoencoder in this paper is 
composed of two autoencoders. The first autoencoder will extract fea
tures from the 2000 input sample points, compress them into the first 
feature set of 100 sample points, and then reconstruct the 2000 input 
points. The second autoencoder takes the first feature set as an input and 
compresses it into the second feature set of 50 sample points, and then 
the autoencoder reconstructs the 100 input points. By comparing the 
data before and after reconstruction, the feature extraction effect of the 
autoencoder can be evaluated. Fig. 15 show the input data and their 
reconstructions of randomly selected data from the waveform-based AE 
dataset. Fig. 15a shows the input data with 2000 sample points entering 
the first autoencoder and the reconstructed data. Fig. 15b shows input 
data with 100 sample points and data reconstructed by the second 
autoencoder. It can be observed from the figure that the reconstructed 
data is very similar to their input. They have similar data distribution 
patterns. This indicates that the two autoencoders can successfully 
reconstruct their input. Fig. 16 shows the original input data, and the 

Fig. 12. Performance of each classification using random forest: (a) confusion matrix; (b) evaluation of each zone.  
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feature sets extracted by the first and the second autoencoders. In the 
end, the input waveform-based AE data with 2000 sample points was 
compressed to the feature set with 50 sample points, and most of the 
effective information was saved in the feature set. The condensed 
feature set was employed by a softmax layer for classification. 

The data used for the training of this network contained 2700 
waveform-based AE signals randomly selected from all 4050 data. The 

remaining 1350 signals were utilized for testing. Fig. 17a shows the 
source localization results given by the stacked autoencoder. The 
network can correctly localize 1320 AE signals to their corresponding 
zone. The overall accuracy is 97.8%. To be more specific, the number of 
the AE data that were correctly localized in the corresponding zones is 
respectively 266 in zone 1, 264 in zone 2, 264 in zone 3, 258 in zone 4, 
264 in zone 5. The precision, recall, and F1 for each zone are shown in 
Fig. 17b. From zone 1 to 5. Precisions of the five class are respectively 
98.5%, 98.5%, 96.7%, 97.3%, 96.4%. Recalls of the five class are 
respectively 98.5%, 97.8%, 97.8%, 95.6%, 97.8%. F1 of the five class 
are respectively 98.5%, 98.1%, 97.2%, 96.4%, 97.1%. 

The computing time for the training process on an intel i-7 four core 
CPU was 352.89 s. The computing time for testing was 0.04 s. 

5.4. Discussion 

The accuracies and computing times of the localization approaches 
using three different machine learning algorithms are provided in 
Table 4. The approach using stacked autoencoders gives the highest 
accuracy (97.8%), which is much higher than the accuracy obtained by 
ANN (80.0%), and the accuracy given by random forest is acceptable 
(91.5%). This is because, deep learning algorithm such as stacked 
autoencoders automatically extracts the features that are most sensitive 
to the labels, however, the features input to ANN, and random forest are 
extracted manually from the AE signals and there may be several useful 

Fig. 13. Importance of features: (a) the ranking; (b) cumulative importance.  

Fig. 14. Accuracies and computing times of random forest using inputs with 
different cumulative importance. 

Fig. 15. The input and reconstruction patterns of autoencoders: (a) the first autoencoder; (b) the second autoencoder.  
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features that are not extracted as input. The training time of stacked 
autoencoders (352.89 s) is significantly more than ANN (7.96 s) and 
random forest (2.97 s), while the time for the trained machine learning 
models to run the testing processes don’t show a wide variety. Testing 
time for stacked autoencoders, ANN, and the random forest is respec
tively 0.04 s, 0.02 s, and 0.01 s. 

The F1-scores obtained by three different algorithms are shown in 
Fig. 18. It can be observed that the F1 scores of five zones obtained by 
random forest and stacked autoencoders are relatively stable, while the 
F1-scores obtained by ANN show a wide variety in different zones. 

Fig. 16. Patterns of the input waveform and extracted features: (a) input waveform; (b) the first compressed feature set; (c) the second compressed feature set.  

Fig. 17. Performance of classification using SAE: (a) confusion matrix; (b) evaluation of each zone.  

Table 4 
Accuracies and computing times of three algorithms.  

Machine learning algorithm Accuracy Training time 
(s) 

Testing time 
(s) 

ANN 80.0% 7.96 0.02 
Random forest (75% cumulative 

importance) 
91.5% 2.97 0.01 

Stacked autoencoders 97.8% 352.89 0.04  
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Moreover, the F1-scores of stacked autoencoders are generally the 
highest of the three. This means the stacked autoencoder has the best 
performance for localization in each zone. 

To summarize, the source localization approach using stacked 
autoencoders has the best accuracy but the largest training time, while 
the testing times do not differ much by using models being trained. If 
there is no minimum requirement for training time, the source locali
zation approach using stacked autoencoders is the most desirable. The 
approach using random forest is slightly worse than using stacked 
autoencoders but much better than using ANN. The approach using 
random forest is supposed to be an acceptable choice in the case that 
waveforms are not available, and only AE parametric features can be 
provided. 

6. Conclusions. 

This paper considered three machine learning approaches to localize 
simulated SCC AE sources on a 304 stainless steel specimen, which has a 
similar length and thickness with the realistic DCSS canister. ANN, 
random forest, and stacked autoencoders were used. This study aims to 
detect and localize AE sources with only one sensor attached opposite 
the source. To collect a sufficient number of AE data for training and 
testing, AE sources were simulated on the specimen by conducting Hsu- 
Nielsen pencil lead break tests. The main conclusions are as follows:  

• The performance of three machine learning approaches was 
compared. The stacked autoencoders have the best performance 
(97.8% accuracy versus 91.5% and 80.0%). Although the training 
time required for stacked autoencoders is more than the other two 
(352.89 s versus 0.02 s and 0.01 s), their computing time required for 
testing is similar.  

• Feature selection can be achieved by running random forest. The 
random forest model indicated that the AE parametric features “peak 
frequency”, “rise time”, “initial frequency”, “amplitude”, “duration”, 
“PCNTS” and “counts” made up 75% of the cumulative importance 
for all 15 features. Using them as the input for random forest leads to 
increasing accuracy and decreasing computational time. 

• The F1-scores indicated that the performance of stacked autoen
coders in various zones is the best among the three. Moreover, good 
performance in terms of stability in various zones was observed in 
stacked autoencoders while ANN resulted in more variability. 
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